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Abstract 
Understanding the dynamics of transition to turbulence in shear 

flows has been a long standing problem, and although substantial 
progress has been made in various directions to this effect, there is 
still no consistent theory. As part of AFOSR MURI project "Uncer- 
tainty Management in Complex System" at the California Institute of 
Technology (CalTech) with John Doyle as the principal investigator, 
a novel theory was developed on the transition to turbulence borrow- 
ing notions from control theory. This provides a promising framework 
that will help explain the various experimental observations of transi- 
tion to turbulence. In order to make an accurate comparison between 
theory computation and experiment, a boundary layer experiment 
was designed using state of the art, three-dimensional, instantaneous 
measurement techniques. In this report we discuss the details of the 
experiment and its connections with the ongoing theory and compu- 
tations. 

1    Theoretical Framework 

1.1    Introduction 

Understanding turbulence requires a thorough understanding of not only how 
a laminar flow transitions to a turbulent one but also how a turbulent one 



becomes laminar. The latter is of course much harder to understand than the 
former. The traditional approach in understanding transition from laminar 
to turbulent flow is hydrodynamic stability which is based on examining the 
eigenvalues of the operators of the linearized equations. See [17] for details. 
This way of examining hydrodynamic stability has been widely accepted 
due to the spectacular theoretical prediction of Tollmien-Schlichting (T-S) 
waves in the Blasius boundary layer transition by Tollmien and Schlichting. 
and the subsequent painstaking experimental verification by Schubauer and 
Skramstad 20 years later. However, there has been a lot of mismatch between 
theoretical and experimental results in channel flows (Poiseuille, Couette 
and pipe flows etc) as far as the critical Reynolds number is concerned. 
Moreover, in a natural environment one sees stream-wise vortices and not T- 
S waves for these flows. It has been known for a long time, that the boundary 
layer stream-wise vortices is the primary turbulence producing and sustaining 
mechanism, and it is also known that these structures do not correspond to 
the eigenfunctions of the respective linearized equations. Some people ascribe 
them to non-linear mechanisms [31, 32], some call them the pseudo-modes 
based on pseudo-spectra, and others [19, 16] call them optimally growing 
modes based on worst case initial conditions. 

1.2    Generalized Hydrodynamic Stability: Uncertainty 
Analysis 

In the new theory that is being developed we showed that transition to turbu- 
lence in shear flows should not only be viewed as a problem of instability, but 
also as a problem of forcing due to various uncertainties. Consider for exam- 
ple ([14]) the stream-wise constant Navier-Stokes equations. These equations 
can be written in the following form after some manipulations 

du dip du     dip du      1 

~di = "öläy+öyöl+ß 
dAw _      dip dAih     dib dAil:  i   1    2 , 
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Here u is the stream-wise velocity, ip is the stream function in the cross- 
sectional plane, R is the Reynolds number and y and z are the spatial co- 
ordinates in the wall normal and span-wise direction. We proved that these 
equations are globally, non-linearly stable for all Reynolds number about 



Couette flow in the sense of Lyapunov and that the Reynolds number can 
be eliminated from the equations by a suitable transformation. Hence, from 
the point of view of traditional stability these equations should have trivial 
dynamics. In contrast, we showed that these equations produce stream-wise 
vortices and have some very interesting dynamics. Furthermore, there are 
initial conditions such that the total energy scales like R3 in the non-linear 
equations in a way similar to the linearized equations. Using semi-group the- 
ory we showed that the linear equations can be solved exactly. It was found 
in' [18] that a huge variance is sustained under white noise forcing of the 
linear Navier-Stokes equations, and in [1] it was showed analytically that the 
energy of three dimensional stream-wise constant disturbances achieves R3 

amplification under white noise forcing by taking the trace of the covariance 
operator, which is obtained by solving the operator Lyapunov equation. 

We argue that transient growth [20, 26, 15, 16, 21, 22, 23] due to the 
non-normality of the operator is just one aspect of this complicated problem, 
and one needs to develop more general notions of stability and instability 
in the presence of various modelling errors [10, 5]. Any real life transition 
experiment has some disturbances and uncertainty present in it: wall rough- 
ness, interaction of turbulent shear and boundary layers that come from the 
diffuser with the flow in the test section, tunnel oscillations, temperature 
fluctuations leading to change in kinematic viscosity, compressibility effects, 
inaccurate base flow and other external forcing like coriolis forces, acous- 
tic disturbances, noise etc. Moreover, there can be other disturbances and 
uncertainties due to the finite dimensional nature of computations. 

Understanding this worst case behavior of a fluid under a given set of 
disturbances is very important in understanding the flow. Some of these 
disturbances are deterministic and others are random by nature. One has 
to explicitly take this deterministic-stochastic nature of disturbances into 
account in the hydrodynamic stability theory, by writing a deterministic- 
stochastic evolution equation for the dynamics and studying its properties. 

There is much more information in the linearization of the Navier-Stokes 
equations than purely eigenvalues, as the operator is non-normal. Even 
though the linearization is stable, large transients (H2 norm), large frequency 
singular value plots (Hoc norm), small stability margins with respect to un- 
modelled dynamics and large amplification of disturbances are all features 
which are more important in the prediction of the response of the Navier- 
Stokes equations than just eigenvalues. As a first step towards the aforemen- 
tioned goals, we introduced [11] deterministic input-output measures, i.e. the 



input disturbance is deterministic (impulse to energy, energy to peak, energy 
to energy etc) and stochastic input-output measures (spectrum to power, 
power to power, spectrum to power etc) ([12]). We showed that the above 
measures peak at the wavelength of the stream-wise vortices in the boundary- 

layer. 

1.3    Highly Optimized Tolerance 

We call the above type of turbulence in which there are no bifurcations in 
the traditional sense, but the fluid exhibits complex motions, as Highly Opti- 
mized Turbulence (HOT). This has many characteristics similar to the HOT 
complex systems. In general, HOT arises when deliberate robust design aims 
for a specific level of tolerance to uncertainty. The optimization in a pipe is 
based on maximum mass flow rate for a given pressure drop. An airfoil shape 
is designed to trade off maximum lift versus minimum drag within a range of 
speeds. Both designs can be thought of as moving from a generic state to a 
more structured HOT state. Randomly twisted, rough pipes and bluff bod- 
ies become smooth, straight pipes and airfoils. This streamlining eliminates 
bifurcation transitions [24, 25, 28, 30] caused by instability to uncertainty 
in initial conditions, allowing highly sheared flows to remain laminar even 
at high Reynolds numbers. The resulting flows, however, become extremely 
sensitive to new perturbations which were previously irrelevant. These sen- 
sitivities come about because of the large amplification of very small dis- 
turbances such as wall roughness, vibrations and other uncertainties and 
unmodelled dynamics. These "robust, yet fragile" features are characteristic 
of HOT systems, which universally have high performance and high through- 
put, but potentially extreme sensitivities to design flaws and unmodelled or 
rare perturbations. While HOT is motivated primarily by technological and 
biological systems, it has already shed light on one persistent mystery in 
physics, namely the ubiquity of power laws ([27, 33]). 

The Taylor-Couette flow problem also seems to exhibit characteristics of 
HOT theory at certain parameter ranges. These facts are observed from 
the experimental data of Coles at CalTech. He clearly documents that there 
are two kinds of transition: the first is the classical Roulle-Takens bifurcation 
route and occurs when the inner cylinder has large angular velocity compared 
to outer one; the second is what he calls catastrophic transition, and occurs 
when the outer cylinder has a larger angular velocity than the inner one. The 
Taylor instability does not occur, but hysteresis in transition is noticed to 



occur. In fact, the flow transitions in a catastrophic way. In the experiments 
of Taylor in 1920 and Couette and Mallock in 1890 there are hints of this 
catastrophic transition scenario. 

1.4    Dimension Reduction by Gramians 

Navier-Stokes equations are a set of coupled partial differential equations with 
very few exact solutions. One other way to understand these complicated 
equations is through numerical simulations. Central to many numerical sim- 
ulations is the problem of representing a given partial differential equation by 
finite set of ordinary differential equations. This process is achieved through 
what is called a Galerkin projection. However, this finite number of retained 
modes is very large and it is of considerable interest to project the dynam- 
ics of these large number of ordinary differential equations onto a proper 
low dimensional subspace. The traditional methods used in fluid mechanics 
are the Karhunen-Loeve decomposition or Proper orthogonal decomposition 
(POD) and the singular perturbation technique. POD was introduced by 
Lumley [2, 3] into turbulence. The essential idea in POD is the projection 
of the dynamics of the system onto a few basis functions which carry most 
of the energy in an optimal in the L2-norm way. Singular perturbation is 
a time-scale separation technique, which essentially projects the dynamics 
onto a slow manifold by truncating the fast manifold dynamics. 

We introduced new model reduction techniques (balanced truncation, bal- 
anced residualization, Hankel norm reduction, frequency weighted reduction 
etc) in [13] taking into account the underlying input-output properties of 
fluids. This has considerable advantages, like rigorous error bounds and 
transparent physics. The main idea behind these methods is to ignore the 
states of the system that are both weakly controllable and weakly observable 
after the controllability and the observability gramians of the system are 
aligned through a similarity transformation. The relative importance of a 
state in the input-output behavior of the system is given by the correspond- 
ing Hankel singular value. Our computations show that for Navier-Stokes 
equations linearized about Couette flow the Hankel singular values drop very 
steeply. This essentially shows that the Navier-Stokes set of equations is a 
very low rank and high gain operator, and very low order models were ob- 
tained. This is very surprising and it is a very good news from the point of 
view of controlling boundary layer turbulence. 

The theorv is intricately connected with computations, in which we use 



tools from computational fluid mechanics, numerical analysis, optimization 
theory, linear algebra, linear programming etc. 

2    Experiments 

2.1 Past Experimental Work 

One of the main problem in understanding the transition to turbulence and 
turbulence itself is the lack of a good experimental data set. Although a lot 
of data has been collected in the last 100 or so years, the very difficulty of 
experimental conditions for direct study of developed and developing turbu- 
lence restricted the quality of the data. Turbulence is inherently unsteady 
and three-dimensional and hence to capture the essential events and struc- 
tures one has to have a real-time, non intrusive, three-dimensional imaging 
system. Most of the past experimental work is based on point measurements 
and intrusive techniques [34. 35], and as a result the data is of very poor 
quality. We mention here just few of the hundreds of references available in 
this subject. A verv nice reference on the work on boundary layers until 1955 
is [4]. 

References [7], [6] and the work on Görtier vortices indicate the need 
for very careful and controlled boundary layer experiments. The role of 
surface roughness in transition to turbulence is another area in which very 
little is understood. References [8] and [9] made some studies on the effect of 
distributed roughness on transition but the results are inconclusive, although 
there are many speculations as to what might be happening. 

2.2 Aims of the Experiment 

The primary aim of the experiment is to acquire good three-dimensional, 
real-time measurements in transitioning and turbulent boundary layers using 
the state of the art imaging and measurement techniques. Our investigation 
is concerned with the maximum possible amplification rates in the range of 
sub-critical Reynolds numbers. The theoretical prediction of R3 amplification 
will be verified. 

The origin of stream-wise vortices in transitioning and turbulent bound- 
ary layers is unknown. There is a considerable amount of controversy on the 
identification, evolution and dynamics of these vortical structures. Using our 



three dimensional measurement technique we would like to study the coher- 
ent structure formation, growth and destruction and the events that they 
lead to. Some of the new coherent structure identification notions will also 
be applied to the three-dimensional vector field available from the experi- 
ments. We aim in quantifying the contribution of large scale and small-scale 
structures to the flow dynamics and their properties. 

Furthermore, we would like to take into account the strength and char- 
acter of the uncertain environment in analyzing the onset of transition. It 
is hoped that the present experimental study will critically evaluate existing 
theoretical models of transition and provide a good model which can be taken 
as a basis of theoretical and numerical calculations. 

2.3    Digital Particle Image Velocimetry 

The instantaneous velocity measurements will be obtained using the Defo- 
cusing Digital Particle Image Velocimetry (DDPIV) developed in Gharib's 
lab at CalTech. Once the vector field is available, various other fields like 
vorticity. enstrophy, and other information such as dissipation, Lyapunov ex- 
ponents, dimension of the attractor etc will be obtained by appropriate data 
manipulation. It will be a real challenge to extract important features from 
this huge data set by data mining techniques. 

The mean boundary layer profile can be obtained by ensemble or time 
averaging the DDPIV recordings. Digital particle image velocimetry (DPIY) 
gives quantitative instantaneous measurements of the two components of the 
velocity vectors on the plane. Stereo DPIV gives all three components of the 
velocity vectors on the plane and DDPIV gives instantaneous 3-dimensional 
velocity vectors plot in a 3-dimensional volume. These techniques allow us 
to map the global spatial and temporal structure of the flow unlike many 
traditional (hot wire) measurements which give point measurements. 

The basic principle of DPIV is as follows. Small tracer particles are added 
to the flow, and a plane of light sheet within the flow is illuminated twice by- 
means of a laser. The light scattered by the tracer particles is recorded via a 
high quality lens on two separate frames of a CCD sensor. The optical sys- 
tem will be operated at the appropriate resolution. The output of the CCD 
sensor is stored in real time on a laser video disc or directly in the mem- 
ory of a computer. The data is then processed using special subroutines to 
get the velocity field and other information. The investigation of turbulence 
using DPIV is very challenging and requires a careful analysis of a large num- 



ber of images to determine the flow statistics and the dynamics of coherent 
structures from the image sequence. The presently available 3-dimensional 
imaging techniques such as holography, stereo imaging or scanning systems 
suffer from either extreme complex electronics or a lack of spatial and tem- 
poral resolution. The DDPIV is a new technique that provides solutions to 
the aforementioned problems. This system is capable of real time digital 
imaging of bubbly flows and the underlying 3-dimensional velocity field with 
a combined dynamic range, resolution and reliability that surpasses alterna- 
tive systems (Patent pending). It is compact and hence can be easily adopted 
in various experimental facilities such as tow tanks and water tunnels. 

Status: The DDPIV camera is completely redesigned to meet the tight 
resolution requirements in this experiment. For this purpose three pumix 
cameras were acquired as well as Nikon lenses, Yaglasers, frame grabbers, 
synchronizers, timing boards, memory disks, two computers1 and some data 
acquisition software. The camera will be observing a flow volume 5cm wide, 
5cm long and 1cm deep at a location where the boundary layer height is 1cm 
(i.e. lm from the leading edge). The Reynolds number based on stream-wise 
length is about 5000. The smallest structure that can be resolved with this 
configuration is about 1mm long, which is much bigger than the Kolmogorov 
scale at this Reynolds number (about 0.01mm), but the camera can clearly 
resolve the stream-wise vortices in boundary layer which are about 6mm in 
size. 

A considerable amount of time has been spent on calibrating the camera, 
adding three stages to increase the degrees of freedom for easy adjustments 
during the experiment, redesigning the camera box etc. After all this was 
done the camera was tested on the boundary layer a few months ago, but it 
unfortunately did not meet the design requirements. The problem has been 
traced back to a misunderstanding between the person who did the calcu- 
lations and us, as he failed to include in his calculations the fact that the 
camera was observing the structures via a series of media: air, plexi glass and 
water. This caused a change in the refractive index which had to be consid- 
ered because of the stringent requirements. The camera was then redesigned 
and reassembled, and we are now in the process of testing it again. Figure 
(1) shows the DPIV set up. Figures (2,3 and 4) show the redesigned camera 
schematic, base plate drawing and the pin hole configurations respectively. 

^ne for DDPIV and another one for the shear stress sensor and LDV 
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Schematic of DP IV setup 

Figure 1: DPIV Setup 

2.4    Free Surface Water Tunnel Facility 

The experiments are being conducted in the free surface water tunnel fa- 
cility at the Graduate Aeronautical Laboratories at the California Institute 
of Technology (GALCIT). This facility is a recirculating water tunnel: the 
flow from the return pipe empties into a 28° half angle diffuser. The streams 
then pass into a straight wall settling chamber, which contains flow manip- 
ulators that include a perforated plate, honey-combs and three turbulence 
reducing screens. The tunnel has a three-dimensional 6:1 contraction section 
before the test section. The latter is 2m long, lm wide and 0.56m deep and 
is made of lucite with the bottom surface positioned about 1.2m above the 
ground. This allows optical access both from the bottom and from the sides. 
Moreover, it provides an alternative to observing the flow from the top, which 
would suffer from refraction due to surface disturbances. A 20 Hp end suction 
centrifugal type pump drives each stream independently. The maximum flow 
rate corresponds to a mean free stream velocity of approximately 0.6 m/s, 
and the turbulence level in the tunnel is below 0.05. 



Status: We waited for a considerable amount of time for the facility to 
be free for use, as one of the graduate students that was using it is in the 
process of finishing his thesis work. A lot of dust, rust and glass particles 
have accumulated in the tunnel, and this resulted in the flow/water quality 
and optical access being very poor. Hence we spent a few weeks cleaning the 
entire tunnel. We cleaned the perforated plate, the honey combs, the three 
turbulence reducing screens, the filter and the tunnel room. Now the quality 
of the flow is much better. 

2.5 Flat Plate 
The experiment is being done in a boundary layer on a flat plate made of plexi 
glass. The plate has an elliptical leading edge and is of constant thickness 
with a trailing edge flap. It is 44in long, 18in wide and lin thick. The leading 
edge was chosen to be a 6:1 ellipse, as that geometry provides a reasonable 
laminar flow profile over a large portion of the flat plate. The trailing edge 
flap is used to position the stagnation point on the leading edge, thus varying 
the pressure gradient. The length of the flap is 6in, and is held in place with 
brass pins which serve as rear plate supports in the tunnel. It is adjustable 
with an external arm through a flap angle of ±6 degrees. Provision has been 
made in the flat plate to mount the shear stress sensors and the Laser Doppler 
Velocimetry (LDV). The two shear stress sensors are located lOin and 30in 
from the leading edge respectively, and the LDV is located 20in from the 
leading edge. Figure (5) shows the plate assembly. Figure (6) shows the top 
view of the plate with dimensions. 

Status:  We spent few months designing the plate and constructing it. 
The plate is now ready to be installed in the tunnel. 

2.6 Shear Stress Sensors and Laser Doppler Velocime- 
try 

Shear stress sensors are used for measuring the shear stress over the plate, 
by using the fact that the velocity increases linearly with the distance from 
the wall in the viscous sub-layer region of the boundary layer. This sen- 
sor generates a set of diverging fringes to measure the local gradient of the 
velocity. This concept was first proposed by Naqwi, but the simplicity of 
the idea is overshadowed by the complex optical set up.   Recent advances 
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in micro opto-electronic technology have allowed for a new novel apparatus 
to be developed at CalTech (Patent pending) in Gharitrs micro optics lab. 
This new sensor does not require calibration, unlike traditional shear stress 
sensors. As mentioned earlier, the two shear stress sensors are located lOin 
and 30in from the leading edge respectively. Figure(7) shows the shear stress 

sensor. 
Laser Doppler Velocimetry (LDV) measurements of the velocity near the 

wall will be taken at chosen locations, which will be merged with the global 
DDPIV data. This is required, as DDPIV has problems measuring the ve- 
locity very close to wall (in the sub-layer) due to the lack of particles in 
that region. The LDV measuring volume is approximately 1mm in length 
and 0.1mm in diameter. The LDV is located 20in from the leading edge. 
Since the LDV is supposed to be waterproof, considerable care has to be 
taken. Both the LDV and shear stress sensors are connected to the com- 
puter through the GPIB board. The computer does all the post-processing 

of the raw data. 
Status: The shear stress sensors were delivered to us a few months ago. 

and we received the LDV just a few weeks ago. Both of them were connected 
to the computer and were tested. Some minor problems came up with the 
interfacing, and we are in the process of figuring them out. 

3    Future Work 
We have now more or less all the subsystems working and we should be 
taking data in next few weeks. 
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Figure 2: Camera Schematic 
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Figure 6: Top view of Flat Plate 
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Shear Stress Sensor 

Figure 7: Shear stress sensor 
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